
6 Numerical methods

6.1 The intermediate value theorem

The intermediate value theorem states that if a continuous function f with an interval [a, b] as its domain takes
values f(a) and f(b) at each end of the interval, then it also takes any value between f(a) and f(b) at some point
within the interval.

Draw a diagram to illustrate the intermediate value theorem:

It has an important corollary, called Bolzano’s theorem: if a continuous function f(x) has values of opposite signs
at the ends of an interval [a, b], then it has (at least) a root in that interval.

Draw a diagram to illustrate Bolzano’s theorem:

Exercise 41.

1. Show that each of the following functions has at least one root in its given interval.

y = x+ cos(πx); [−1, 0]
y = x2 − e−x; [0, 1]
y = x3 − 2x2 − x+ 1; [0, 1]
y = ln(x2 + 1)− 2 + x; [1, 2]

2. Find three integer values of N such that the equation x4 = 2x has a root in the interval [N,N + 1].

3. Show that the equation 3
√
x2 + 1 = x has a root in the interval [1, 2]. Then use numerical methods to find this

root, correct to 3 decimal places. You may sketch a diagram to illustrate the question.

4. Use numerical methods to find the solution, between 7 and 8, of the equation: tanx = x, correct to 3 decimal
places. You may sketch a diagram to illustrate the question.



6.2 Solving equations by iteration

When solving an equation F (x) = 0, it is sometimes useful to rearrange to the form

x = f(x),

which is called an iterative formula. A root, α of the equation F (x) = 0, is called a fixed point, or an invariant
point, or an equilibrium of the function f(x), as f(α) = α.

Starting with a number x0 (sufficiently) close to α, (x0 ≈ α), we may apply the iterative formula to produce a sequence
of numbers:

x0, x1 = f(x0), x2 = f(x1), · · · , xk+1 = f(xk), · · · .

One possibility is that this sequence may approach α as n→∞:

lim
n→∞

xk = α.

In this case, α is called a stable fixed point, or a stable equilibrium, or an attractor. We may use this iterative
formula to find the approximate value of α.

Try to find a root of the equation 3
√
x+ 1 = x, by starting with x0 = 1, correct to 3 decimal places. You may draw a

diagram to illustrate how this iteration proceeds.

Exercise 42.

1. Use the iteration x = tan−1(x2 + 1) to find the root of the equation tanx = x2 + 1 correct to 2 decimal places,
showing the result of each iteration to 4 decimal places.

2. Show that the equation 2x = x3 has a root between 1 and 2.
Use an iterative method based on the rearrangement x = 2

x
3 , with initial approximation x0 = 2, to find the

value of the root correct to 2 decimal places, showing the result of each iteration to 4 decimal places.

3. Show that the equation e
√
x = x2 − 1 has a root between 2 and 3.

Use an iterative method based on the rearrangement x =
√

e
√
x + 1, with initial approximation x0 = 2, to find

the value of the root correct to 2 decimal places, showing the result of each iteration to 4 decimal places.

4. Sketch the graphs of y = x and y = cosx, and state the number of roots of the equation x = cosx.
Use a suitable iteration and starting point to find this root, correct to 3 decimal places.
What if we use the iteration x = cos−1 x starting from x = 0?

5. Show that the equation 2x + 3x = 6x has a root between 1.5 and 2.
Use a suitable iteration to solve this equation, correct to 2 decimal places.



The other possibility is that, even if the starting point of iteration, x0, is picked very close to α, the sequence {xk}
still fails to converge to α, instead it may tend to infinity, converge to some other value, or even oscillates. In this
case, α is called an unstable fixed point, or an unstable equilibrium, or a repeller.

For each of the following example, draw diagrams to illustrate why the iterations fail.

1. The equation x3 = x has root α = 1.
The iteration with initial value x0 = 0.9 tends to another root 0,
while the iteration with initial value x0 = 1.1 tends to infinity.

2. The equation 1.3 sinx = x has root α = 0.
Any iteration with a positive initial value, no matter how small, tends to the positive root around 1.2215.
Similarly, any iteration with a negative initial value tends to the negative root around −1.2215.

(�) Now we look at the conditions of convergence of such iterations.

In fact, for a fixed point α of a function f(x), if |f ′(α)| < 1 then attraction is guaranteed.

A slightly looser condition is Lipschitz continuity with Lipschitz constant L < 1 near the fixed point α, that is:

∀s, t ≈ α, |f(s)− f(t)| ≤ L|s− t|.

Exercise 43.

1. It is given that the equation x3 − x− 1 = 0 has only one real root α.

(a) Show that 1 < α < 2.

(b) Explain why the iteration x = x3 − 1 fails to converge to α.

(c) Explain why the iteration x = 3
√
x+ 1 works, and use this iteration to give an estimate value of α correct

to 2 decimal places.

2. (�) The equation is given to be
ex = x2 + 5x− 1 (∗)

(a) By carefully sketching both y = ex and y = x2 + 5x− 1, determine the number of roots of (∗).
(b) Use the iterative formula x = ln(x2 + 5x− 1) to find the root between 3 and 4, correct to 2 decimal places.

(c) Try to work out two other iterations to find the other roots, correct to 2 decimal places.



6.3 The trapezium rule

The trapezium rule is used to estimate e definite integral. When the integrating interval [a, b] is equally divided

into n sub-intervals [xk−1, xk] (k = 1, 2, 3 . . . , n), where xk = a+ kh, and h =
b− a
n

is the width of each sub-interval,

the integral is estimated as:∫ b

a

f(x) dx ≈ h
{

1
2f(x0) + [f(x1) + f(x2) + · · ·+ f(xn−1)] + 1

2f(xn)
}
.

Use the trapezium rule with 4 intervals to estimate the value of

∫ 6

2

lnxdx.

Draw a diagram to illustrate whether this is an overestimate or an underestimate.

From this example, you can see that the estimation given by the trapezium rule is an over- respective underestimate,

if the integrand f(x) is a respective function on the interval [a, b];

in another word, if respective , for x ∈ [a, b].

Exercise 44.

1. Use the trapezium rule with 5 intervals to estimate the value of

∫ 3

1
2

(
x+

1

x

)
dx.

2. Use the trapezium rule with 6 intervals to estimate the value of

∫ π

0

sinxdx, correct to 2 decimal places.

Compare with the true value of the integral and explain why this is an underestimate.

3. Use the trapezium rule with (a) 4 intervals; (b) 6 intervals; (c) 8 intervals, to estimate the value of

∫ 1

0

1

x2 + 1
dx,

each correct to 4 decimal places. Compare the results with the true value of the integral.

4. Use the trapezium rule with 5 intervals to estimate the value of

∫ 6

1

e
1
x dx, correct to 3 decimal places.

Determine whether this is an overestimate or an underestimate.


