6 Numerical methods

6.1 The intermediate value theorem

The intermediate value theorem states that if a continuous function f with an interval $[a, b]$ as its domain takes values $f(a)$ and $f(b)$ at each end of the interval, then it also takes any value between $f(a)$ and $f(b)$ at some point within the interval.

Draw a diagram to illustrate the intermediate value theorem:

It has an important corollary, called Bolzano's theorem: if a continuous function $f(x)$ has values of opposite signs at the ends of an interval $[a, b]$, then it has (at least) a root in that interval.

Draw a diagram to illustrate Bolzano's theorem:

Exercise 41.

1. Show that each of the following functions has at least one root in its given interval.

$$
\begin{array}{ll}
y=x+\cos (\pi x) ; & {[-1,0]} \\
y=x^{2}-\mathrm{e}^{-x} ; & {[0,1]} \\
y=x^{3}-2 x^{2}-x+1 ; & {[0,1]} \\
y=\ln \left(x^{2}+1\right)-2+x ; & {[1,2]}
\end{array}
$$

2. Find three integer values of N such that the equation $x^{4}=2^{x}$ has a root in the interval $[N, N+1]$.
3. Show that the equation $\sqrt[3]{x^{2}+1}=x$ has a root in the interval $[1,2]$. Then use numerical methods to find this root, correct to 3 decimal places. You may sketch a diagram to illustrate the question.
4. Use numerical methods to find the solution, between 7 and 8 , of the equation: $\tan x=x$, correct to 3 decimal places. You may sketch a diagram to illustrate the question.

6.2 Solving equations by iteration

When solving an equation $F(x)=0$, it is sometimes useful to rearrange to the form

$$
x=f(x),
$$

which is called an iterative formula. A root, α of the equation $F(x)=0$, is called a fixed point, or an invariant point, or an equilibrium of the function $f(x)$, as $f(\alpha)=\alpha$.

Starting with a number x_{0} (sufficiently) close to $\alpha,\left(x_{0} \approx \alpha\right)$, we may apply the iterative formula to produce a sequence of numbers:

$$
x_{0}, x_{1}=f\left(x_{0}\right), x_{2}=f\left(x_{1}\right), \cdots, x_{k+1}=f\left(x_{k}\right), \cdots
$$

One possibility is that this sequence may approach α as $n \rightarrow \infty$:

$$
\lim _{n \rightarrow \infty} x_{k}=\alpha
$$

In this case, α is called a stable fixed point, or a stable equilibrium, or an attractor. We may use this iterative formula to find the approximate value of α.

Try to find a root of the equation $\sqrt[3]{x+1}=x$, by starting with $x_{0}=1$, correct to 3 decimal places. You may draw a diagram to illustrate how this iteration proceeds.

Exercise 42.

1. Use the iteration $x=\tan ^{-1}\left(x^{2}+1\right)$ to find the root of the equation $\tan x=x^{2}+1$ correct to 2 decimal places, showing the result of each iteration to 4 decimal places.
2. Show that the equation $2^{x}=x^{3}$ has a root between 1 and 2 .

Use an iterative method based on the rearrangement $x=2^{\frac{x}{3}}$, with initial approximation $x_{0}=2$, to find the value of the root correct to 2 decimal places, showing the result of each iteration to 4 decimal places.
3. Show that the equation $\mathrm{e}^{\sqrt{x}}=x^{2}-1$ has a root between 2 and 3 .

Use an iterative method based on the rearrangement $x=\sqrt{\mathrm{e}^{\sqrt{x}}+1}$, with initial approximation $x_{0}=2$, to find the value of the root correct to 2 decimal places, showing the result of each iteration to 4 decimal places.
4. Sketch the graphs of $y=x$ and $y=\cos x$, and state the number of roots of the equation $x=\cos x$. Use a suitable iteration and starting point to find this root, correct to 3 decimal places. What if we use the iteration $x=\cos ^{-1} x$ starting from $x=0$?
5. Show that the equation $2^{x}+3^{x}=6^{x}$ has a root between 1.5 and 2 .

Use a suitable iteration to solve this equation, correct to 2 decimal places.

The other possibility is that, even if the starting point of iteration, x_{0}, is picked very close to α, the sequence $\left\{x_{k}\right\}$ still fails to converge to α, instead it may tend to infinity, converge to some other value, or even oscillates. In this case, α is called an unstable fixed point, or an unstable equilibrium, or a repeller.

For each of the following example, draw diagrams to illustrate why the iterations fail.

1. The equation $x^{3}=x$ has root $\alpha=1$.

The iteration with initial value $x_{0}=0.9$ tends to another root 0 , while the iteration with initial value $x_{0}=1.1$ tends to infinity.
2. The equation $1.3 \sin x=x$ has root $\alpha=0$.

Any iteration with a positive initial value, no matter how small, tends to the positive root around 1.2215. Similarly, any iteration with a negative initial value tends to the negative root around -1.2215 .
(\ddagger) Now we look at the conditions of convergence of such iterations.
In fact, for a fixed point α of a function $f(x)$, if $\left|f^{\prime}(\alpha)\right|<1$ then attraction is guaranteed.
A slightly looser condition is Lipschitz continuity with Lipschitz constant $L<1$ near the fixed point α, that is:

$$
\forall s, t \approx \alpha, \quad|f(s)-f(t)| \leq L|s-t|
$$

Exercise 43.

1. It is given that the equation $x^{3}-x-1=0$ has only one real root α.
(a) Show that $1<\alpha<2$.
(b) Explain why the iteration $x=x^{3}-1$ fails to converge to α.
(c) Explain why the iteration $x=\sqrt[3]{x+1}$ works, and use this iteration to give an estimate value of α correct to 2 decimal places.
2. (\dagger) The equation is given to be

$$
\begin{equation*}
e^{x}=x^{2}+5 x-1 \tag{*}
\end{equation*}
$$

(a) By carefully sketching both $y=\mathrm{e}^{x}$ and $y=x^{2}+5 x-1$, determine the number of roots of $(*)$.
(b) Use the iterative formula $x=\ln \left(x^{2}+5 x-1\right)$ to find the root between 3 and 4, correct to 2 decimal places.
(c) Try to work out two other iterations to find the other roots, correct to 2 decimal places.

6.3 The trapezium rule

The trapezium rule is used to estimate e definite integral. When the integrating interval $[a, b]$ is equally divided into n sub-intervals $\left[x_{k-1}, x_{k}\right](k=1,2,3 \ldots, n)$, where $x_{k}=a+k h$, and $h=\frac{b-a}{n}$ is the width of each sub-interval, the integral is estimated as:

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx h\left\{\frac{1}{2} f\left(x_{0}\right)+\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n-1}\right)\right]+\frac{1}{2} f\left(x_{n}\right)\right\} .
$$

Use the trapezium rule with 4 intervals to estimate the value of $\int_{2}^{6} \ln x \mathrm{~d} x$.

Draw a diagram to illustrate whether this is an overestimate or an underestimate.

From this example, you can see that the estimation given by the trapezium rule is an over- respective underestimate, if the integrand $f(x)$ is a \qquad respective \qquad function on the interval $[a, b]$; in another word, if \qquad respective \qquad , for $x \in[a, b]$.

Exercise 44.

1. Use the trapezium rule with 5 intervals to estimate the value of $\int_{\frac{1}{2}}^{3}\left(x+\frac{1}{x}\right) \mathrm{d} x$.
2. Use the trapezium rule with 6 intervals to estimate the value of $\int_{0}^{\pi} \sin x \mathrm{~d} x$, correct to 2 decimal places. Compare with the true value of the integral and explain why this is an underestimate.
3. Use the trapezium rule with (a) 4 intervals; (b) 6 intervals; (c) 8 intervals, to estimate the value of $\int_{0}^{1} \frac{1}{x^{2}+1} \mathrm{~d} x$, each correct to 4 decimal places. Compare the results with the true value of the integral.
4. Use the trapezium rule with 5 intervals to estimate the value of $\int_{1}^{6} \mathrm{e}^{\frac{1}{x}} \mathrm{~d} x$, correct to 3 decimal places. Determine whether this is an overestimate or an underestimate.
